Linear Programming Practice Friday Week 6

A ski manufacturer makes two types of skis and has a fabricating department and a finishing department. A pair of downhill skis requires 6 hours to fahricate and 1 hourto finish. A pair of crosscountry skis takes 4 hưis to fávicate and 1 hour to finish. The fahricating department has 100 hours of lahnr available per day. The finishing departmont has 24 hours of labor available per day. The company makes a profit of $\$ 10$ on each pair of downhill skis and a profit of $\$ 30$ on each pair of cross-country skis.
a) How many of each kind of skis should they make to maximize the profit?
b) What is the maximum profit?
c) Step \#1: Write the constraints (the inequalities)

Let $x=\#$ pairs of downhill skis
$6 x+4 y \leq 108$
$1 x+1 y \leq 24$
$x \geq 0 ; y \geq 0$
Step \#2: Write the objective function.
$P=40 x+30 y$

Step \#3: Graph the constraints

Step \#4: State the coordinates of each vertex.
$(0,0) \quad(18,0) \quad(0,24) \quad(6,18)$

Step \#5: Test the coordinates of each vertex in the objective function.

Vertices	$P=40 x+30 y$
$(0,0)$	$\mathrm{P}=40(0)+30(0)=0$
$(18,0)$	$\mathrm{P}=40(18)+30(0)=720$
$(0,24)$	$\mathrm{P}=40(0)+30(24)=720$
$(\mathbf{0}, \mathbf{1 0})$	

You should manufacture 6 pair of downhill skis and 18 pair of X-country skis to get a maximum profit of $\$ 780$

Objective Function $P=40 x+30 y$
$P=40(0)+30(0)=0$
Step \#6: Answer the question.
$P=40(18)+30(0)=720$
$P=40(0)+30(24)=720$
| $r=4 \hat{v}(\hat{0}) \div 3 \hat{v}^{(10)}-70 \hat{u}$

Trenton, Michigan, as small community, is trying to establish a public transportations system of large and small vans. It can spend ne more than $\$ 100,000$ for both sizes of vehicles and no more tham $\$ 500$ per monthiormaintenance. The community can purchase a small van fui $\$ 10,000$ and maintain it for $\$ 100$ per month. The large vaits cisst $\$ 20,000$ each and can be maintained for $\$ 75$ per month. Each largevan carries a maximum of 15 passengers, and each small van carries a maximum of 7 passergers.
a) How many of each kind of van should they buy to maximize the number of people that can be transported?
b) What is the maximum number of people?
c) Step \#1: Write the constraints (the inequalities)
$10,000 x+20,000 y \leq 100,000$
Let $x=\#$ small vans
$y=\#$ large vans
$100 x+75 y \leq 500$
$x \geq 0 ; y \geq 0$
Step \#2: Write the objective function.

$$
P=7 x+15 y
$$

Step \#3: Graph the constraints

Step \#4: State the coordinates of each vertex.
\# small vans
$(0,0) \quad(5,0) \quad(0,5) \quad(2,4)$

Step \#5: Test the coordinates of each vertex in the objective function. Objective Function

Vertices	$P=7 x+15 y$
$(0,0)$	$P=7(0)+15(0)=0$
$(5,0)$	$P=7(5)+15(0)=35$
$(0,5)$	$P=7(0)+15(5)=75$
$(2,4)$	$P=7(2)+15(4)=74$

